Rotational symmetry of Bravais lattice:

A rotational axis of a Bravais lattice is a line passing through lattice point, and lattice remains indistiuishable after rotation about some specific angle. If the axis is translated with action of translation vector, it is clearly still is a rotation axis. The Two such axes are said to be equivalent. Since a lattice consists of desecrate points, rotation at any angle will obviously not reproduce the original structure; there must be finite desecrate angles φ_{0} across which if lattice rotated, the original structure is reproduced. Any other angle Θ which represent symmetry rotation about same axis has to be integral multiple of φ_{0}
$\frac{\varphi}{\varphi_{o}} \leq v<\frac{\varphi}{\varphi_{o}}+l$ where v is uniquely defined integer which also satisfies the condition, $0 \leq \nu \varphi-\varphi_{o}<\varphi_{o}$ but since φ and φ_{0} both are allowed rotation $\left(\nu \varphi_{0}-\varphi\right)$ is also allowed.

Obviously for every rotation axis has 360° is an allowed rotational angle it follows that φ_{0} has to be integral multiple of 360° and $\left(360 / \varphi_{0}\right)=\mathrm{n}$ number of folds of symmetry axis has.

Inseparable ${ }^{1}$ translation symmetry from rotation symmetry constrains the value of ' n ' equal to 2, 3, 4, and 6 .

Also the plane perpendicular to the rotational axis and containing one lattice point contains infinite numbers of two dimensional net of points. Therefore, the whole lattice can be generated by stacking such nets on top of each other.

Before creating such 3D lattices by stacking nets, we must first determine the rotation symmetry of each such two dimensional net.

[^0]
Plane nets:

How do you create the net ${ }^{2}$ of least possible symmetry?
 unit cell (as showr by dotted line). The two fold axis point
 another do not. In conclusion, the if thenet has ' n ' axis passing through lattice points there must exist axis passing anywhere other than the lattice points.

In the oblique/lattice, allfour axes has two fold symmetry ($\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D). If two of the two fold axis becomes four folds it leads to square net.
 perpendicular rotation axis.

[^1]In general the axis which is not perpendicular to the plane of net
exception about the axes which are lying in the plane itself which acts
as reflection line with in the net. Let ' AB ' be the reflection line, and
' P ' be the lattice point in the plane. The reflection operator then produces another point P ' indicates that there exists lattice translation vector perpendicular to $A B$. Then if is possible to choose primitive translation vector $\mathbf{a}_{\mathbf{1}}$ perpendicular to AB . Such a line perpendicular to $A B$ has two nonequivalent reflection points. (1) The lattice point it self and (2) midway between two lattice points.

Let us point A and B in the figure be the sites of some plane lattice.

Let ' n ' fold axes passing perpendicular to

\bullet the lattice plane . supose one such axis passing throuh "A". If we carry out rotational symmetry operation to get identical structure, we have to rotate it by angle ' α ' $=360 / \mathrm{n}$. After doing so we will get point ' C ' and ' D '. The presence of translational symmetry requires that the new point ' C ' and ' D ' should coinside with the lattice point. This requirement carn be express as $|C D|=m \times a$, where ' m ' is an integer. From simple geometrical considaration, we have $\mathrm{m} . \mathrm{a}=\mathrm{a}+2 \times \mathrm{a} \cdot \cos (\alpha) \quad$ where, $\mathrm{m}=0, \pm 1, \pm 2, \ldots$.
\pm is used because the rotation is either clockwise or antocløckwise. Dividing both the side by 'a' we get,

$$
m=1+2 \cos (\alpha) \text { or }(m-1)=2 \cos (\alpha)
$$

since ' m ' is an integer, ($m-1$) will also be an integer. Take ($m-1$) $=\mathrm{N}$
then, $\mathrm{N}=2 \cos (\alpha)$ or $\cos (\alpha)=N / 2$ where $\mathrm{N}=0, \pm 1, \pm 2, \ldots$.

As all the values of $\cos (\alpha)$ lies in the range 1 to -1 corresponding values of N, α, and n can easily obtained.

\mathbf{N}	$\cos \boldsymbol{\alpha}$	$\boldsymbol{\alpha}$	'n' allowed rotations
-2	-1	180	2
-1	$-1 / 2$	120	3
0	0	90	4
+1	$1 / 2$	60	6
+2	+1	360 or 0	1

This table clearly shows the non existing of symmetry axes other than 1,2,3,4,6

[^0]: ${ }^{1}$ (the put its explanation as an assignment)

[^1]: ${ }^{2}$ Two dimensional lattice or 'net'work is called net.

