DC442 Electrochemistry part : 12 march 2013 Home work due date: 18March 2013: Santosh Haram 10 marks

(1) State the Butler Volmer Formulation for the charge transfer electrode reaction $\mathrm{O}+\mathrm{e} \leftrightarrow \mathrm{R}$ Show that the equation gets simplify to Nernst equation up on imposing the equilibrium condition.
(2) Calculate the net current density for the varied over potential ranging from +500 mV to 500 mV with a step of 50 mV , for the exchange current densities $\mathrm{j}_{\mathrm{o}}=$ (a) $10^{-3} \mathrm{~A} \mathrm{~cm}^{-2}$ (b) 10^{-6} $\mathrm{A} \mathrm{cm}^{-2}$ and (c) $10^{-9} \mathrm{~A} \mathrm{~cm}^{-2}$, for the reactions of the type $\mathrm{O}+\mathrm{e}^{\leftrightarrow} \leftrightarrow \mathrm{R}$ assume $\alpha=0.5$ and $\mathrm{T}=298 \mathrm{~K}$.
(3) Calculate the net current density for the varied over potential ranging from +500 mV to 500 mV with a step of 50 mV , for the exchange current densities $\mathrm{j}_{\mathrm{o}}=10^{-3} \mathrm{~A} \mathrm{~cm}^{-2}$ for varied α (a) $=0.75$ (b) 0.50 and (c) 0.25 , at temperature 298 K
(4) In the well stirred electrochemical cell the anodic current was found to be 1% of the cathodic current, what over potential should apply to the system, so that system will reach mass transport ,limit?
(5) Consider each of the following electrode-solution interfaces write the equation of the electrode reaction that occurs first when potential is moved in (i) a negative direction (ii) positive direction, from the open circuit potentials.
a. $\mathrm{Pt} / \mathrm{Cu}^{2+}(0.01 \mathrm{M}), \mathrm{Cd}^{2+}(0.01 \mathrm{M}), \mathrm{H}_{2} \mathrm{SO}_{4}(1 \mathrm{M})$
b. Pt/ $S n^{2+}(0.01 M), S n^{4+}(0.01 M), H C l(1 M)$
c. $P t / C l^{2+}(0.01 M), \mathrm{Zn}^{2+}(0.01 M), \operatorname{HCl}(1 M)$
(6) Consider the electrode reaction, $\mathrm{O}+\mathrm{e}^{\hookrightarrow} \mathrm{R}$ under the conditions that $C_{R}^{*}=C_{O}^{*}=1 \mathrm{mM}$, $\mathrm{k}^{\mathrm{o}}=10^{-7} \mathrm{cms}^{-1}, \alpha=0.3$ and $\mathrm{n}=1$
a. Calculate the exchange current density j_{o}
b. Draw the current density=overpotential curve for this reaction for current density upto $600 \mu \mathrm{~A} \mathrm{~cm}^{-2}$ anodic and cathodic. Neglect the mass transfer effect.
(7) The following data were obtained for the reduction of species R to R in stirred solution at $0.1 \mathrm{~cm}^{2}$ electrode. The solution at $0.1 \mathrm{~cm}^{2}$ electrode. The solution contains 0.01 MR and R^{-}

$\eta(\mathrm{mV})$	-100	-120	-150	-500	-600
$\mathrm{I}(\mu \mathrm{A})$	45.9	62.6	100	965	965

Calculate $\mathrm{i}_{\mathrm{o}}, \mathrm{k}_{\mathrm{o}}, \alpha, \mathrm{R}_{\mathrm{ct}}$, and i_{L},

